Data Collection
Advanced

Instructors: Joseph Reibenspies, Ph.D.
Nattamai Bhuvanesh, Ph.D.

Version 2.0.1_2009
APEXII

Collect Matrix for UnitCell

Practicals X-ray Diffraction Series 2
Increase for weak scattering crystals
Harvest Spots TIPS

1. Move slider all the way to the left

More SPOTS!
2. Move slider to the right to index

Circles should match the spots. Most spots should be accounted for.
Use viewer to check for double axis or commensurate structures.
Press F1 to view down a^* axis. Measure c^* or b^*. Look for reflections between the layers.
Press “+” for the “double” line and check for reflections on that line.
APEXII – cell_now

Create a P4P file

[Image of APEXII software interface]

Call a command line and start cell now
The first unit cell is acceptable and is chosen. Although in this case only 26 reflections were collected it is advisable to collect at least 10 times this number.
The results are written to a P4P file and imported into the APEX program. The “fit” is shown below.

As seen most of the spots corresponds to the positions predicted by the unit cell.
You can use the current peak list or create a new one to create a new list
1) point to Crystal/-Clear and point to OK
2) point to Crystal/-Threshold

use the ... to find the frame file you want to start at. Set the number of frames (here it is set at 200). Set the raw count and I/sigma low threshold (-1 and 20 are ok for the SMART, 20 and 20 for the GADDS). Point to OK

The output information is displayed. The total # usable is 149. If you want more reflections then increase the number of frames in the first step. For less decrease the number of frames. Point to ok
Repeat this for two more sets of frames.

To save your results point to Crystal/--LS

Input the output P4P file name (here I have uncl.p4p). NOW POINT TO CANCEL (NOT OK).

Point to Edit/--Save P4P. This will write the output file to the disk. Minimize SMART

Start a command prompt (point START/RUN and type cmd). Navigate to your data directory and type cell_now

Input the P4P file (here it is uncl.p4p) and use the defaults for Initial Search, Threshold 10 and cell edge 5.40. If you think you may have a larger cell then change the cell edge setting to 3,
80. Remember this will slow the program down!

Let the program think. It may take a while depending on your computer etc.

Cell now found three solutions. All are very similar. Solution number 1 is the best with 99.3 % coverage and a Figure of Merit of one.

Accept this solution (A) and write a new P4P file in this case uncn1.p4p. Notice that of the 278 reflections the cell "fits" 276.

Return to SMART and read in the new file. Point to FILE/READ .P4P. Find the new file.

Point to Crystals/--LS and do a LS refinement on the cell (you may want to rename it to something else). Check the output it should fit in the good, bad and ugly cell definition.
If too bad or to ugly then redo cell_now and find a new cell. Now point to CRYSTAL/--BRAVAIS point to OK and you will see something like this. Your choices are 1 for monoclinic, 2 for triclinic and 0 for no action. WHEN IN DOUBT CHOOSE ZERO for NO ACTION. Point to OK. Point to CRYSTAL/--LS and OK to save the Bravais results.

For Twin or Split crystals repeat the procedure. In this case the percent coverage will be lower for each "solution". Pick the "best" solution first and let the program search for a second solution. Save the second solution in a P4P file.
Data Collection Strategies

If your unit cell is greater than 40 Å (Mo Radiation) you will need to move the detector from the normal 5.0 or 6.0 cm distance. If so you will need to collect more than the "normal" set of frames.

Detector Distance (for SMART1000)

Detector Distance (mm) > 1.5 * Max Cell Length (Å)

Minimum and Maximum 2θ settings for Data Collection to $55^\circ : 2\theta_{\text{max}}$

How to use.

With the distance-to-detector distance from your experiment find the min and max 2θ setting angles. Collect one set of frames at the min 2θ setting and one set at the max 2θ setting. If the difference in the max and min value is large, then you may need to collect an extra set of frames at an intermediate value of 2θ.

For resolution to $55^\circ 2\theta$ (0.770Å)
Suggested 20 settings for Smart 1000 to resolution to 55° (Mo)

<table>
<thead>
<tr>
<th>Distance(cm)</th>
<th>Sets of Frames</th>
<th>Lower setting</th>
<th>Mid. Setting</th>
<th>Upper Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-32°</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-28°</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-23</td>
<td>NA</td>
<td>-32°</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>-20°</td>
<td>NA</td>
<td>-35°</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>-18°</td>
<td>NA</td>
<td>-38°</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>-16°</td>
<td>NA</td>
<td>-40°</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>-14°</td>
<td>NA</td>
<td>-41°</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>-13°</td>
<td>-28°</td>
<td>-42°</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>-12°</td>
<td>-28°</td>
<td>-43°</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>-11°</td>
<td>-28°</td>
<td>-44°</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>-10°</td>
<td>-28°</td>
<td>-45°</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>-9.5°</td>
<td>-28°</td>
<td>-45.5°</td>
</tr>
</tbody>
</table>
Cosmo for GADDS
Point to File/Load Configuration. Find cosmo_5.ini (normally in F:\frames) for the 5 cm detector distance.
Point to File/Import Crystal Data import your file
Point to Refine Strategy and let the program refine a few seconds
Point and hold (left mouse button)
Refine Strategy and choose the sort runs option let the program sort the runs.
Point to View/Detailed Strategy. The black is the permanent strategy from cosmo_5.ini. The blue is the extra frames from cosmo. Select all of the blue and then right click. Disable the
sets. Return to main menu screen. Take note of the Completeness. In this case the default strategy is 96% complete without any new data sets. This is for a triclinic data set in the space group P \(-1\). I would like to collect ALL of the data for a P1 space group. Therefore change the Bijvoet Pairs to not-merged by pointing to merged

and left clicking. Now check the Completeness. We are not at 78% which is unacceptable (should be near 90%). Run the refine strategy by pointing at the sort runs button and left clicking. Let the program run until at least 90% completeness is seen (higher is better). Note the results. After run 12 the blue line (% completeness line) levels off. We can stop the data collection after the 12 set of frames and still have a complete data set. Point to View/Detailed Strategy and select all frame sets after #12, right click them and disable them. Now pick all the
remaining blue sets, right click them and make them permanent. Return to main menu and note the completeness (in this case ~95%) with ok redundancy 2.4. Point to File/Export strategy and write a text file with the results.

In FRAMBO (or GADDS or SMART) point to COLLECT/SCANS EDITRUNS highlight all of the frame sets and delete them. Point to READ and import the text file you made with COSMO. Edit this file. Remember to always place a space between numbers. (e.g. when editing line 09 place a space between −90.000 and −170.000.

Be sure to use the CURSOR KEYS to move between number NOT THE MOUSE

Change the time to fit your data collection etc.

Start the data collection normally.
COSMO for APEXII

Practicals X-ray Diffraction Series
Data Collection for Absolute Configuration.

For absolute configuration studies you need to collect many Bijvoet Pairs \((F(h) \text{ and } F(-h))\). One way to do this is to use Cosmo to determine the data collection strategy. Or a generic data collection which includes both \(+2\theta\), \(+\theta\) and \(-2\theta\), \(-\theta\) frames will work. An example is shown below.

![Run List Table](image)

<table>
<thead>
<tr>
<th>Run</th>
<th>Frame</th>
<th>2-Theta</th>
<th>Omega</th>
<th>Phi</th>
<th>Chi</th>
<th>Axis</th>
<th>Width</th>
<th>#Frames</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>001</td>
<td>-28.00</td>
<td>-29.00</td>
<td>0.00</td>
<td>54.70</td>
<td>2</td>
<td>-0.300</td>
<td>600</td>
<td>10.00</td>
</tr>
<tr>
<td>2</td>
<td>001</td>
<td>-28.00</td>
<td>-29.00</td>
<td>0.00</td>
<td>54.70</td>
<td>2</td>
<td>-0.300</td>
<td>600</td>
<td>10.00</td>
</tr>
<tr>
<td>3</td>
<td>001</td>
<td>-28.00</td>
<td>-29.00</td>
<td>50.00</td>
<td>54.70</td>
<td>2</td>
<td>-0.300</td>
<td>600</td>
<td>10.00</td>
</tr>
<tr>
<td>4</td>
<td>001</td>
<td>28.00</td>
<td>29.00</td>
<td>50.00</td>
<td>54.70</td>
<td>2</td>
<td>-0.300</td>
<td>600</td>
<td>10.00</td>
</tr>
<tr>
<td>5</td>
<td>001</td>
<td>-28.00</td>
<td>-29.00</td>
<td>180.00</td>
<td>54.70</td>
<td>2</td>
<td>-0.300</td>
<td>600</td>
<td>10.00</td>
</tr>
<tr>
<td>6</td>
<td>001</td>
<td>28.00</td>
<td>29.00</td>
<td>180.00</td>
<td>54.70</td>
<td>2</td>
<td>-0.300</td>
<td>600</td>
<td>10.00</td>
</tr>
</tbody>
</table>
APEX TOOLS

Practicals X-ray Diffraction Series