Twinning tools in PLATON

Detection and Absorption Correction

Martin Lutz, Bijvoet Center for Biomolecular Research
Dep. Crystal and Structural Chemistry, Utrecht University,
Padualaan 8, 3584 CH Utrecht, The Netherlands.
Merohedral Twins

- The twin element belongs to the holohedry of the lattice, but not to the point group of the crystal.
- The reciprocal lattices of all twin domains superimpose exactly.
- In the triclinic, monoclinic and orthorhombic crystal systems, the merohedral twins can always be described as inversion twins.
Non-merohedral Twins

- Twin operation does not belong to the Laue group or point group of the crystal.
- In practice there are three types of reflections:
 - Reflections belonging to only one lattice.
 - Completely overlapping reflections belonging to both lattices.
 - Partially overlapping reflections belonging to both lattices.
Non-merohedral Twins
Non-merohedral Twins

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Diagram showing crystallographic axes and unit cell]
Warning signs

• The R_{int} value for the higher-symmetry Laue group is only slightly higher than for the lower-symmetry Laue group
• The mean value for $|E^2-1|$ is much lower than the expected value of 0.736
• The space group appears to be trigonal or hexagonal
• The apparent systematic absences are not consistent with any known space group
• For all of the most disagreeable reflections F_o is much greater than F_c

(Herbst-Irmer & Sheldrick, 1998)
Non-merohedral Twins

• Non-merohedral twins should be detected on the diffractometer.
• Indexing problems can be solved with
 – Phi- and Phi/Chi-Scans
 – Dirax as indexing program
• Intensities can be obtained with EvalCCD
 – Output: SHELX HKLF5 file
Non-merohedral Twins

• If the structure can be solved and refined, non-merohedral twins can be detected with PLATON
 – Input file: *compound.fcf*
 – GUI: TwinRotMat
 – Command line: *platon –T compound.fcf*
PLATON

A Multpurpose Crystallographic Tool

(C) 1980-2003 A.L. Spek - 10M-Version: 90503

<table>
<thead>
<tr>
<th>GRAPHICS</th>
<th>GEOM-CALC</th>
<th>VOIDS TWIN</th>
<th>SYMMETRY</th>
<th>ABSORPTION</th>
<th>REPORT</th>
<th>MISC-TOOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLUTONauto</td>
<td>CALC ALL</td>
<td>CALC SOLV</td>
<td>ADDSYM</td>
<td>DELrefABS</td>
<td>VALIDATION</td>
<td>SYSTEM-S</td>
</tr>
<tr>
<td>ORTEP/ADP</td>
<td>CALC INTRA</td>
<td>CALC K.P.I</td>
<td>ADDSYM-XCT</td>
<td>ABSPsLScan</td>
<td>ASYM-VIEW</td>
<td>FCF2HKL</td>
</tr>
<tr>
<td>NEWMANN</td>
<td>CALC INTER</td>
<td>SQUEEZE</td>
<td>ADDSYM-PLT</td>
<td>ABSTompa</td>
<td>FCF-VALID</td>
<td>EXPAND-P1</td>
</tr>
<tr>
<td>RING-PLOTS</td>
<td>CALC COORD</td>
<td>CALC-FCF</td>
<td>ADDSYM-SX</td>
<td>ABSGauss</td>
<td>SUPPLEMMAT</td>
<td>FCF-GENER</td>
</tr>
<tr>
<td>PLANE-PLAT</td>
<td>CALC METAL</td>
<td>CONTOUR-SQ</td>
<td>NEVSYM</td>
<td>ABSxtal</td>
<td>ANALofVAR</td>
<td>HKL-GEN</td>
</tr>
<tr>
<td>POI YHF/FFRA</td>
<td>CAI C GFOM</td>
<td></td>
<td>NONSYM</td>
<td>ARSSphere</td>
<td>Twl.nRnt.Mat.</td>
<td>HKL-TRANSF</td>
</tr>
<tr>
<td>CONTOUR-DF</td>
<td>CALC HBOND</td>
<td>SOLV PLOT</td>
<td>LEPAGE</td>
<td>MULscanABS</td>
<td>ASYM-EXPT</td>
<td>EXOR-RES</td>
</tr>
<tr>
<td>CONTOUR-FC</td>
<td>CALC TMA</td>
<td>CAVITY-PLT</td>
<td>DELRED</td>
<td>SHXABS</td>
<td>CIF-LOCAL</td>
<td>ANIS-RES</td>
</tr>
<tr>
<td>AutoMapFit</td>
<td></td>
<td></td>
<td>MOLSYM</td>
<td>RENAME-RES</td>
<td>PDB -pdb</td>
<td></td>
</tr>
<tr>
<td>HKL2Powder</td>
<td></td>
<td></td>
<td>ASYM</td>
<td>EXPECT-HKL</td>
<td>SPF -sdp</td>
<td></td>
</tr>
<tr>
<td>SlamPowderP</td>
<td>PATTERN</td>
<td></td>
<td>ASYMaverFR</td>
<td>CSD-CELL</td>
<td>SHELXL-res</td>
<td></td>
</tr>
<tr>
<td>PLUTONatv</td>
<td></td>
<td></td>
<td></td>
<td>CSD-QUEST</td>
<td>CIF -acc</td>
<td></td>
</tr>
</tbody>
</table>

Xtal Data (CIF) m025b.clf- Set 1(11): m025b
Refl Data (SHELXL) m025b.fcf [NO-DIRC] :m025b

INSTRUCTION INPUT via KEYBOARD or LEFT-MOUSE-CLICKS (HELP with RIGHT CLICKS)
Cell 7.4014 8.0163 8.2906 89.41 77.54 74.65 P-1

Analysis of Fo/Fc Data for (Non)Merohedral TwInnLng

Criteria: DeltaI/SigmaI GT. 2.5, DeltaTheta 0.10 Deg.

N(refl) = 2104, N(selected) = 149

2-Rotation about [1 4 0] Flt: 42(68)
(-0.995 0.499 -0.006) (h1) (h2) Alpha () I = 0.78 Deg.
(0.020 0.995 -0.024) * (k1) = (k2) TPA = 0.29
(0.000 0.000 -1.000) (l1) = (l2)

2-Rotation about [1 -1 0] Flt: 12(18)
(0.081 -0.919 -0.199) (h1) (h2) Alpha () I = 1.23 Deg.
(-1.081 -0.081 0.199) * (k1) = (k2) TPA = 0.28
(0.000 0.000 -1.000) (l1) = (l2)

2-Rotation about [0 1 1] Flt: 12(22)
(-1.000 0.000 0.000) (h1) (h2) Alpha () I = 0.33 Deg.
(-0.530 0.044 0.956) * (k1) = (k2) TPA = 0.09
(-0.530 1.044 -0.044) (l1) = (l2)

2-Rotation about [0 1 0] Flt: 12(36)
(-1.000 0.000 0.000) (h1) (h2) Alpha () I = 2.60 Deg.
(-0.596 1.000 0.095) * (k1) = (k2) TPA = 0.22
(0.000 0.000 -1.000) (l1) = (l2)

INSTRUCTION INPUT via KEYBOARD or LEFT-MOUSE-CLICKS (HELP with RIGHT CLICKS)
Cell 7.4046 8.0125 8.2856 89.37 77.49 74.67 P-1

Analysis of Fo/Fo Data for (Non)Merohedral Twinninng

Criteria: DeltaI/SLgmaI GT 5.0, DeltaTheta 0.10 Deg.

N(refl) = 2103, N(selected) = 166

2-Rotation about [1 4 0] (0 1 0) Flt: 53(82)
(-0.995 0.499 -0.008) (h1) (h2) Alpha () () = 0.82 Deg.
(0.021 0.995 -0.025) * (k1) = (k2)
(0.000 0.000 -1.000) (l1) = (l2)

2-Rotation about [0 1 0] (-4 12 1) Flt: 20(52)
(-1.000 0.000 0.000) (h1) (h2) Alpha () () = 2.64 Deg.
(-0.595 1.000 0.084) * (k1) = (k2)
(0.000 0.000 -1.000) (l1) = (l2)

2-Rotation about [1 1 0] (9 7 -2) Flt: 15(35)
(0.140 0.060 -0.230) (h1) (h2) Alpha () () = 1.11 Deg.
(1.140 -0.140 -0.230) * (k1) = (k2)
(0.000 0.000 -1.000) (l1) = (l2)

2-Rotation about [1 0 1] (-3 8 12) Flt: 12(24)
(0.189 -0.300 0.811) (h1) (h2) Alpha () () = 0.52 Deg.
(0.000 -1.000 0.000) * (k1) = (k2)
(1.189 -0.300 -0.169) (l1) = (l2)
TwInRotMat

Analysys of F0/Fc Data for (Non)Merohedral TwInLnG

Criteria: DeltaI/Std.gma GT. 2.5, DeltaTheta 0.10 Deg.

N(refl.) = 2109, N(selected) = 206

2-Rotation about [1 4 0 1] [0 1 0] Ftt: 74 (99)

(-0.996 0.499 -0.008) (h1) (h2) Alpha () [] = 0.78 Deg.
(0.018 0.996 -0.024) * (k1) = (k2) TPA = 0.47
(0.000 0.000 -1.000) (l1) = (l2)

2-Rotation about [0 1 0 1] [-4 12 1] Ftt: 22 (51)

(-1.000 0.000 0.000) (h1) (h2) Alpha () [] = 2.62 Deg.
(-0.596 1.000 0.094) * (k1) = (k2) TPA = 0.35
(0.000 0.000 -1.000) (l1) = (l2)

2-Rotation about [1 0 1 1] [12 -3 8] Ftt: 16 (27)

(0.189 -0.301 0.811) (h1) (h2) Alpha () [] = 0.54 Deg.
(0.000 -1.000 0.000) * (k1) = (k2) TPA = 0.28
(1.189 -0.301 -0.189) (l1) = (l2)

2-Rotation about [1 1 0 1] [9 7 -2] Ftt: 16 (38)

(0.138 0.862 -0.229) (h1) (h2) Alpha () [] = 1.09 Deg.
(1.138 -0.138 -0.229) * (k1) = (k2) TPA = 0.36
(0.000 0.000 -1.000) (l1) = (l2)

INSTRUCTION INPUT via KEYBOARD or LEFT-MOUSE-CLICKS (HELP with RIGHT CLICKS)
Non-merohedral Twins

- TwinRotMat has an option to generate a HKLF5 file based on the twin matrix.
- Warning: The amount of overlapping reflections depends not only on the twin matrix:
 - (Anisotropic) mosaicity
 - Crystal size
 - Detector distance and rotation angle
 - Etc.
- Better: EvalCCD
Example

• Three different crystals of the same compound
• Crystal 1 [BASF 0.0878(19)]:
 • R_1 (obs.) 0.0233, wR_2 (all) 0.0591, $-0.47/1.38 \text{ e/Å}^3$
 • R_1 (obs.) 0.0211, wR_2 (all) 0.0534, $-0.38/0.50 \text{ e/Å}^3$
• Crystal 2 [BASF 0.5482(7)]:
 • R_1 (obs.) 0.1323, wR_2 (all) 0.3361, $-2.29/12.99 \text{ e/Å}^3$
 • R_1 (obs.) 0.0282, wR_2 (all) 0.0693, $-0.59/0.64 \text{ e/Å}^3$
• Crystal 3 [BASF 0.228(2)]:
 • R_1 (obs.) 0.0481, wR_2 (all) 0.1340, $-0.62/3.83 \text{ e/Å}^3$
 • R_1 (obs.) 0.0261, wR_2 (all) 0.0658, $-0.48/0.51 \text{ e/Å}^3$
Pseudo-merohedral Twins

- These are non-merohedral twins, where all reflections seem to overlap because of the limited resolution of the equipment.
- Because cell parameters are temperature dependent, a temperature change can lead to splitting of reflections.
- Pseudo-merohedral twins are optimally suited for TwinRotMat.
Absorption Correction

- With reflections in HKLF4 format, all methods of absorption correction in PLATON are applicable:
 - ABSPsiScan
 - ABSTompa/ABSGauss
 - MULscanABS
 - DELrefABS
 - TWIN/BASF card in `compound.res` is treated properly.
Absorption Correction

- With reflections in HKLF5 format, only analytical absorption corrections are possible (ABST/ABSG).
- Direction cosines of all twin domains must be based on the same orientation matrix (e.g. of the first domain).
- In PLATON the option check direction cosines must be switched off.
Absorption Correction

• The shape of the crystal can be optimized using the program EUHEDRAL based on a HKLF4 file.
• The refined crystal shape can then be applied to a HKLF5 file using PLATON.
EUHEDRAL

- A computer program for the refinement of the crystal shape for an analytical absorption correction
EUHEDRAL

- The difficulty with the analytical absorption correction is the determination of the crystal shape
 - Errors in crystal size measurement
 - Presence of other absorbing material (glass, oil, grease)
 - Unclear face indices
• In many laboratories the crystal shape is refined before the absorption correction is performed
• We want to offer a computer program for this purpose, which
 – makes use of the redundancy of area detector data
 – is as flexible as possible
 – is independent of the diffractometer type
 – is running on many UNIX/LINUX platforms
• EUHEDRAL was developed in close relation to the PLATON package.
• A running version of PLATON is therefore needed. (http://www.cryst.chem.uu.nl/platon)
• The reflection data must contain direction cosines as described for SHELX76 (crystal coordinate system).
EUHEDRAL

- All minimizations in EUHEDRAL are based on a merging R-value R_2

$$R_2 = w_1 \cdot R_{int} + w_2 \cdot R_{\psi}$$

$$R_{int} = \frac{\sum[abs(int - intmean)]}{\sum(int)}$$

$$R_{\psi} = \frac{1}{n} \sum\left[\frac{int_{max}}{int_{min}} - 1\right]$$
EUHEDRAL

- The program EUHEDRAL can be run on the command line
- or with a graphical user interface (GUI) based on Tcl/Tk
EUHEDRAL

Info: first select ins file
EUHEDRAL

- In a first step the number of reflections is reduced with the routine filter.
- The suitability of this subset can be judged from different projections.
- Several filter criteria are available: Minimal intensity, minimal theta, minimal redundancy, and angular distribution.
EUHEDRAL
EUHEDRAL

• Situation 1
 – Start with a measured crystal shape (faces are indexed and crystal size determined)
 – Refine volume and distances
 – Fine-tune the description by tilting the faces
EUHEDRAL
EUHEDRAL

- Ex. s2422b (Pt-complex, $\mu = 13.60$ mm$^{-1}$)
- Without correction: $R^2 = 1.069$
- Measured crystal shape+size: $R^2 = 0.592$
- Refined crystal shape+size: $R^2 = 0.497$
EUHEDRAL

- Situation 2
 - Crystal shape known, faces not indexed
 - Refinement of crystal orientation with respect to the reciprocal axes
 - Then refinement of volume, distance and tilt
EUHEDRAL

• Situation 3
 – Nothing known about crystal size and shape
 – Start with a dodecahedron model (EUHEDRAL offers 7 different dodecahedrons)
 – Refinement of volume and distance
 – Refinement of orientation and tilt
EUHEDRAL
EUHEDRAL

R2=0.592 R2=0.497 R2=0.480
EUHEDRAL

• No correction
 – $R_{int}=0.1082$
 – $R1(\text{obs. refl.})=0.0353$
 – Res. dens. −3.05/2.05
 – Ellipticity Pt: 1.99

• EUHEDRAL
 – $R_{int}=0.0553$
 – $R1(\text{obs. refl.})=0.0310$
 – Res. dens. −2.20/1.13
 – Ellipticity Pt: 1.71
EUHEDRAL

- EUHEDRAL
 - 0.101-0.342 transmission
 - $R_{\text{int}}=0.0553$
 - $R1(\text{obs. refl.})=0.0353$
 - Res. dens. –2.20/1.13
 - Ellipticity Pt: 1.71

- DELABS (PLATON)
 - 0.280-0.728 transmission
 - $R_{\text{int}}=0.0504$
 - $R1(\text{obs. refl.})=0.0291$
 - Res. dens. –1.64/1.08
 - Ellipticity Pt: 1.58
EUHEDRAL

- Home page:
 www.crystal.chem.uu.nl/distr/euhedral/
Thanks

• Many thanks
 – A.L. Spek and A.M.M. Schreurs for useful discussions.
 – Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO) for financial support.